您IP所在的地区,暂不支持官方真题素材

建议使用其他功能进行阅读练习

返回
小站备考
托福
托福阅读
Official30阅读真题

OFFICIAL30 Paragraph 5 answers which of the following questions about mechanical clocks.

展开
The Invention of the Mechanical Clock
Tip:单击查看句义;划选/双击查生词
In Europe, before the introduction of the mechanical clock, people told time by sun (using, for example, shadow sticks or sun dials) and water clocks. Sun clocks worked, of course, only on clear days; water clocks misbehaved when the temperature fell toward freezing, to say nothing of long-run drift as the result of sedimentation and clogging. Both these devices worked well in sunny climates; but in northern Europe the sun may be hidden by clouds for weeks at a time, while temperatures vary not only seasonally but from day to night.

Medieval Europe gave new importance to reliable time. The Catholic Church had its seven daily prayers, one of which was at night, requiring an alarm arrangement to waken monks before dawn. And then the new cities and towns, squeezed by their walls, had to know and order time in order to organize collective activity and ration space. They set a time to go to sleep,to open the market ,to close the market ,to leave work ,and finally a time to put out fires and to go to sleep. All this was compatible with older devices so long as there was only one authoritative timekeeper; but with urban growth and the multiplication of time signals, discrepancy brought discord and strife. Society needed a more dependable instrument of time measurement and found it in the mechanical clock.

We do not know who invented this machine, or where. It seems to have appeared in Italy and England (perhaps simultaneous invention) between 1275 and 1300. Once known, it spread rapidly, driving out water clocks but not solar dials, which were needed to check the new machines against the timekeeper of last resort. These early versions were rudimentary, inaccurate, and prone to breakdown.



Ironically, the new machine tended to undermine Catholic Church authority.
Although church ritual had sustained an interest in timekeeping throughout the centuries of urban collapse that followed the fall of Rome, church time was nature’ s time. Day and night were divided into the same number of parts, so that except at the equinoxes, days and night hours were unequal; and then of course the length of these hours varied with the seasons. But the mechanical clock kept equal hours, and this implied a new time reckoning. The Catholic Church resisted, not coming over to the new hours for about a century. From the start, however, the towns and cities took equal hours as their standard, and the public clocks installed in town halls and market squares became the very symbol of a new, secular municipal authority. Every town wanted one; conquerors seized them as especially precious spoils of war; tourists came to see and hear these machines the way they made pilgrimages to sacred relics.



The clock was the greatest achievement of medieval mechanical ingenuity. Its general accuracy could be checked against easily observed phenomena, like the rising and setting of the sun. The result was relentless pressure to improve technique and design. At every stage, clockmakers led the way to accuracy and precision; they became masters of miniaturization, detectors and correctors of error, searchers for new and better. They were thus the pioneers of mechanical engineering and served as examples and teachers to other branches of engineering.

The clock brought order and control, both collective and personal. Its public display and private possession laid the basis for temporal autonomy: people could now coordinate comings and goings without dictation from above. The clock provided the punctuation marks for group activity, while enabling individuals to order their own work (and that of others) so as to enhance productivity. Indeed, the very notion of productivity is a by-product of the clock: once one can relate performance to uniform time units, work is never the same. One moves from the task-oriented time consciousness of the peasant (working on job after another, as time and light permit) and the time-filling busyness of the domestic servant (who always had something to do) to an effort to maximize product per unit of time.

10.Paragraph 5 answers which of the following questions about mechanical clocks.

你的答案:
正确答案:B
题目解析:
 后才能查看题目解析,还没有账号? 马上注册
B 没有特别好的定位词,需要综合理解。第五段主要说clockmaker引领了准确,精准工程的发展,他们是master,teacher等等,然后说他们是先锋,但这些都是因为他们是制表人。这段并没有说制表人是如何工作的,所以A选项的How没有得到回答。B选项的Why和整段的前半部分吻合。所以这道题选B。而C选项的机械钟表制作的方法在原文也没有提及;D选项的影响设计的事物,也没有提及。

学习页面

Medi

terr

anean

加强 + 政府 + 名词后缀

加强的政府——管理

原文例句

加入生词

本文生词 0

色块区域是你收藏过的生词;

查询次数越多,颜色越深哦~

显示文中生词

登录后才能收藏生词哦,现在登录注册>

本文重点词 45

文中加粗单词为本文重点词;

根据词频与核心词范围精心挑选,托福考试必掌握词汇。

显示文中重点词
学习本文词汇

文中划选/双击的生词、加粗重点词已收纳至词盒

可随时点击词盒查看哦~

只有在词句精学模式下才能开启词盒功能哦~

我知道了

词盒
收藏
笔记
我的笔记
5000
保存
反馈