您IP所在的地区,暂不支持官方真题素材

建议使用其他功能进行听力练习

返回
小站备考
托福
托福听力
Official53听力真题

OFFICIAL53 What leads scientists to believe that Saturn's rings are much younger than the planet itself?

展开
Tip:单击查看句义;划选/双击查生词

[00:00.00]NARRATOR: Listen to part of a lecture in an astronomy class.
[00:04.65]MALE PROFESSOR: Saturn's rings have always baffled astronomers. [00:08.44]Until about 30 years ago, we thought the rings were composed of particles of ice and rock that were left over from Saturn's formation—extra material that never managed to form, uh, coalesce into a moon.
[00:22.28]As you know, it’s believed that Saturn, and all the planets in our solar system coalesced from a swirling cloud of gas some 4.8 billion years ago. [00:34.56]However, if the rings are made of leftovers from that process, then they'd also be about 4.8 billion years old. [00:43.02]The problem is that anything gathering space dust for that long would certainly have darkened by now.
[00:50.76]But Saturn's rings—most of them, anyway—are pristine...so bright and shiny that they make Saturn the jewel of the solar system.[01:00.16]So the hypothesis that the rings are just made of material left over from the time of planetary formation—[01:07.16]that hypothesis must be wrong. [01:10.50]Saturn's rings are much younger than the planet itself.[01:14.58]They may have formed only a few hundred million years ago—around the time the earliest dinosaurs lived on Earth. [01:21.68]We realize now that the ring particles, which, uh, range in size from microscopic dust to boulders bigger than large houses. Well, a lot of these particles are eventually lost. [01:36.21]We believe they gradually spiral down out of the rings and into the planet's atmosphere. [01:41.90]This occurs as a result of the planet's gravity, [01:45.61]and also because of the effects of its magnetic field ...
[01:49.63]Now, if material from Saturn's rings is being lost and nothing new is added from time to time, the rings would be disappearing. But that’s not happening! [02:02.80]So somehow, there must be new material feeding the ring system. [02:07.32]Question is: Where's this new material coming from? [02:11.24]So we're back to square one. [02:13.54]But, instead of asking, “How did the rings form?” We should be asking… uh, anyone? Beth?[02:22.65]FEMALE STUDENT: How do the rings form?
[02:24.54]MALE PROFESSOR: How do the rings form! [02:26.94]Because they're apparently replenishing themselves somehow. [02:30.75]Uh, OK, here's one possibility—[02:34.09]the moons, the dozens of moons that orbit Saturn are providing raw material for the rings.
[02:40.78]A moon in a system as complex as Saturn's—and Saturn has at least 49 known moons, which vary tremendously in size and shape. [02:50.66]Um, a moon in such a complex system is not only affected by the gravitational force of the planet, but also by that of the other moons.
[03:01.99]FEMALE STUDENT: So the planet may be pulling a moon one way, and other moons may be pulling it... other ways?[03:07.48]MALE PROFESSOR: Exactly. Such forces could actually alter a moon’s orbit, and as a result, there might be a collision—one moon might crash into another—[03:17.51]and the debris from that collision could become part of the rings.[03:22.11]Then there are tidal forces. A moon might get too close to the planet and get broken apart by Saturn's tidal forces.[03:31.72]FEMALE STUDENT: Excuse me. You mean, tidal forces, like high tide and low tide on the oceans?[03:37.05]MALE PROFESSOR: Well, by “tidal force,” I'm referring to the gravitational pull of Saturn on its moons. [03:43.69]Um, in the mid-1800s, a French scientist named édouard [03:54.08]Roche was studying the effects of a planet's tidal forces on its moons.Roche was able to show mathematically that if one celestial body—say, a moon—uh, if it passes too close to another—say, a planet—that has a gravitational force stronger than the force of self-attraction that holds the moon together,
[04:10.96]well, that first body, that moon, it'd be ripped apart. [04:16.08]We call the distance at which this happens the “Roche limit.” [04:20.83]So if one of Saturn's moons reaches the Roche limit of the planet or even a larger moon, it would disintegrate—be torn apart, and thus add more material to the ring system.[04:33.42]And there's another way new material might be added to Saturn's rings—an asteroid crashing into one of the moons. [04:41.05]This hypothesis is supported by the fact that some of the many rings are a bit reddish in color. Uh, yes, George?[04:49.72]MALE STUDENT: I'm sorry. I don't follow the logic.[04:52.13]MALE PROFESSOR: Well, this reddish coloration suggests the presence of complex organic molecules—uh, carbon-based molecules—mixed in with the water-ice. [05:02.63]Remember, the rest of Saturn's rings are made almost entirely of water-ice. [05:08.32]And none of Saturn's moons is red. [05:11.46]But asteroids could be...[05:14.33]and thus could end up contributing to the ring system the kind of carbon-based molecules we're talking about.

2.What leads scientists to believe that Saturn's rings are much younger than the planet itself?

你的答案:
正确答案:A
题目解析:
 后才能查看题目解析,还没有账号? 马上注册
本题定位到原文:However, if the rings are made of left over some process, then they’d also be about 4.8 billion years old.......But Saturn’s rings, most of them anyway, are pristine, so bright and shiny that they make Saturn “the jewel of the solar system”. 此处原文的大意是:研究者本来认为,如果土星环是由气体旋转形成的话,那它们的年龄会是很老了,那么就会暗淡无光,但实际上土星环还是很明亮的,所以可能并没有已经形成了那么长时间。 题干问的是是什么让科学家相信土星环要比行星本身年轻得多的。 选项A的意思是很多土星环很明亮,闪闪发光,选项B的意思是很多土星环是由复杂材料构成的,选项C的意思是土星环比科学家意识到的要细,选项D的意思是土星环里有小的卫星。选项A符合原文,其他三个选项则不合适。

学习页面

Medi

terr

anean

加强 + 政府 + 名词后缀

加强的政府——管理

原文例句

加入生词

本文生词 0

色块区域是你收藏过的生词;

查询次数越多,颜色越深哦~

显示文中生词

登录后才能收藏生词哦,现在登录注册>

本文重点词 45

文中加粗单词为本文重点词;

根据词频与核心词范围精心挑选,托福考试必掌握词汇。

显示文中重点词
学习本文词汇

文中划选/双击的生词、加粗重点词已收纳至词盒

可随时点击词盒查看哦~

只有在词句精学模式下才能开启词盒功能哦~

我知道了

词盒
收藏
笔记
我的笔记
5000
保存
反馈